Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres.

نویسندگان

  • J A Eyre
  • S Miller
  • G J Clowry
  • E A Conway
  • C Watts
چکیده

From studies of subhuman primates it has been assumed that functional corticospinal innervation occurs post-natally in man. We report a post-mortem morphological study of human spinal cord, and neurophysiological and behavioural studies in preterm and term neonates and infants. From morphological studies it was demonstrated that corticospinal axons reach the lower cervical spinal cord by 24 weeks post-conceptional age (PCA) at the latest. Following a waiting period of up to a few weeks, it appears they progressively innervate the grey matter such that there is extensive innervation of spinal neurons, including motor neurons, prior to birth. Functional monosynaptic corticomotoneuronal projections were demonstrated neurophysiologically from term, but are also likely to be present from as early as 26 weeks PCA. At term, direct corticospinal projections to Group Ia inhibitory interneurons were also confirmed. Independent finger movements developed much later, between 6 and 12 months post-natally. These data do not support the proposal that in man, establishment of functional corticomotoneuronal projections occurs immediately prior to and provides the capacity for the expression of fine finger movement control. We propose instead that such early corticospinal innervation occurs to permit cortical involvement in activity dependent maturation of spinal motor centres during a critical period of perinatal development. Spastic cerebral palsy from perinatal damage to the corticospinal pathway secondarily involves disrupted development of spinal motor centres. Corticospinal axons retain a high degree of plasticity during axon growth and synaptic development. The possibility therefore exists to promote regeneration of disrupted corticospinal projections during the perinatal period with the double benefit of restoring corticospinal connectivity and normal development of spinal motor centres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balance training and ballistic strength training are associated with task-specific corticospinal adaptations.

The aim of this study was to investigate the role of presumably direct corticospinal pathways in long-term training of the lower limb in humans. It was hypothesized that corticospinal projections are affected in a training-specific manner. To assess specificity, balance training was compared to training of explosive strength of the shank muscles and to a nontraining group. Both trainings compri...

متن کامل

Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury.

The injured adult mammalian spinal cord shows little spontaneous recovery after injury. In the present study, the contribution of projections in the dorsal half of the spinal cord to functional loss after adult spinal cord injury was examined, together with the effects of transgenic cellular delivery of neurotrophin-3 (NT-3) on morphological and functional disturbances. Adult rats underwent bil...

متن کامل

Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey.

The postnatal development of corticospinal projections was investigated in 11 macaques by means of the anterograde transport of wheat germ agglutin-horseradish peroxidase injected into the primary motor cortex hand area. Although the fibers of the corticospinal tract reached all levels of the spinal cord white matter at birth, their penetration into the gray matter was far from complete. At bir...

متن کامل

Sensorimotor Integration by Corticospinal System

The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despi...

متن کامل

Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

The corticospinal system-with its direct spinal pathway, the corticospinal tract (CST) - is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 123 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 2000